МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ (МИНОБРНАУКИ РОССИИ)

Федеральное государственное бюджетное научное учреждение "ФЕДЕРАЛЬНЫЙ НАУЧНЫЙ АГРОИНЖЕНЕРНЫЙ ЦЕНТР ВИМ" (ФГБНУ ФНАЦ ВИМ)

ПРОГРАММА

вступительных испытаний по специальной дисциплине для поступающих на обучение по образовательным программам высшего образования — программам подготовки научно-педагогических кадров в аспирантуре

по направлению подготовки 35.06.04 Технологии, средства механизации и энергетическое оборудование в сельском, лесном и рыбном хозяйстве

направленность: «Электротехнологии и электрооборудование в сельском хозяйстве»

І. ОРГАНИЗАЦИОННО-МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ПРОВЕДЕНИЮ ЭКЗАМЕНА

1.1. Цель вступительного испытания в аспирантуру - отобрать наиболее подготовленных абитуриентов для обучения в аспирантуре.

Вступительный экзамен проводится в форме тестирования посредством электронной информационной системы, составленным из перечня экзаменационных вопросов.

Экзамен проводится на русском языке.

Продолжительность экзамена 180 минут. Результаты экзамена оцениваются по 100-балльной шкале

1.2. При отсутствии опубликованных научных работ обязательным условием допуска к экзамену является подготовка реферата, который должен показать готовность поступающего к научной работе. Лица, получившие положительный отзыв на реферат или опубликованные научные работы, допускаются к вступительным экзаменам в аспирантуру.

Вступительный реферат является самостоятельной работой, содержащей обзор состояния сферы предполагаемого исследования. Объем реферата составляет 20-25 страниц печатного текста.

В реферате автор должен продемонстрировать четкое понимание проблемы, знание дискуссионных вопросов, связанных с ней, умение подбирать и анализировать фактический материал, умение сделать из него обоснованные выводы, наметить перспективу дальнейшего исследования и подготовить предложения по предполагаемой теме диссертационного исследования.

2. СОДЕРЖАНИЕ РАЗДЕЛОВ И ТЕМ ПРОГРАММЫ СПЕЦИАЛЬНОЙ УЧЕБНОЙ ДИСЦИПЛИНЫ «ЭЛЕКТРОТЕХНОЛОГИИ И ЭЛЕКТРООБОРУДОВАНИЕ В СЕЛЬСКОМ ХОЗЯЙСТВЕ»

- 1. Линейные и нелинейные электрические цепи. Нелинейные элементы, как генераторы высших гармоник тока и напряжения. Типы характеристик нелинейных элементов. Энергетический баланс в электрических цепях. Расчет токов и напряжений при несинусоидальных источниках питания. Классификация способов компенсации высших гармоник в электрических цепях. Методы расчета электрических цепей. Метод контурных токов в матричной форме. Методы расчета электрических цепей. Метод симметричных составляющих и его применение для расчета цепей трехфазного переменного тока.
- 2. Аппаратура и автоматическое управление электроприводами. Понятие о переходном и установившемся режимах САР. Понятие устойчивости и качества САР. Исследование качества САР по переходным характеристикам. Принципы построения САУ. Разомкнутые САУ, САУ по возмущению, замкнутые САУ, комбинированные САУ. Экспериментальные методы определения динамических свойств элементов и объектов управления. Корректирующие звенья САР. Назначение, варианты подключения.. Законы регулирования.
- **3.** Преобразование электрической энергии в тепловую. Основы электродного нагрева, электропроводность воды, выбор плотности тока и напряженности электрического поля. Основы расчета непроточного электродного водонагревателя. Трубчатые элементные

нагреватели (ТЭНы), их устройство, основные технические данные, области применения и выбор. Индукционный нагрев, его особенности. Генераторы высокой частоты. Области применения индукционного нагрева. Элементные и электродные водонагреватели с.х. назначения. Техника безопасности при их эксплуатации. Способы электрического обогрева помещений. Техника безопасности при эксплуатации устройств электрообогрева. Расчет устройств электрообогрева помещений.

- 4. Эксплуатация электрооборудования. Электрические нагрузки сельскохозяйственных предприятий, их расчет. Электрические нагрузки сельскохозяйственных предприятий, их расчет. Регулирование напряжения в электрических сетях. Основные средства регулирования. Выбор сечения проводов. Проверка выбранной электрической аппаратуры на термическую и динамическую стойкость Выбор мощности силового трансформатора 10/0,4 кВ. Потери мощности и энергии. Методы их снижения. Энергосберегающие технологии. Проверка узла нагрузки на устойчивость.
- 5. Обработка материалов и продуктов электрическим током. Способы обработки сельскохозяйственный материалов с использованием электротехнологии. Принципы работы датчиков для измерения влажности сельскохозяйственных материалов.

3. ШКАЛА ОЦЕНИВАНИЯ ДЛЯ ВСТУПИТЕЛЬНЫХ ЭКЗАМЕНОВ В АСПИРАНТУРУ ПО НАПРАВЛЕНИЮ 35.06.04. ТЕХНОЛОГИИ, СРЕДСТВА МЕХАНИЗАЦИИ И ЭНЕРГЕТИЧЕСКОЕ ОБОРУДОВАНИЕ В СЕЛЬСКОМ, ЛЕСНОМ И РЫБНОМ ХОЗЯЙСТВЕ

Задачи экзаменационного билета разбиты на 2 группы: А и В.

Первая группа задач A позволяет оценить базовый уровень знаний по агроинженерии. Каждая правильно решенная задача №№A1-A35 оценивается в два балла.

Вторая группа задач В позволяет оценить умения и навыки по агроинженерии. Каждая правильно решенная задача №№В1-В5 оценивается в шесть баллов.

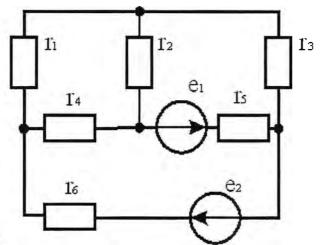
После выполнения экзаменационной работы в черновике абитуриент должен правильно записать ответы в электронную форму компьютерного тестирования. Для этого ему нужно:

- 1) переписать решения задач A1-A35 из черновика ответы задач в графу «Ответ»;
- 2) перенести в электронную форму краткие решения задач B1–B5 (соотношения, которые следуют из условий, основные преобразования и т. д.) в электронной форме, преобразованные путем сканирования или фотографирования с обеспечением машиночитаемого распознавания его реквизитов.

Любая задача из группы А считается решённой правильно, если в графе «Ответы» приведён правильный ответ этой задачи. Отсутствие правильно записанного ответа по задачам означает, что соответствующее задание не выполнено.

Задача группы В считается правильно решённой, если приведено (направлено) краткое её решение со всеми необходимыми промежуточными выкладками, а также приведён правильный ответ. Наличие краткого решения задач группы С позволяет экзаменаторам оценить эти решения и при наличии ошибок. В этом случае (в зависимости от ошибки) решение задачи оценивается целым числом от 0 до 6 баллов.

Для выполнения экзаменационной работы отводится 3 часа (180 минут). Работа состоит из 2 частей, включающих 40 заданий. Если задание не удается выполнить сразу, перейдите к следующему.


Часть А

К каждому заданию части A даны несколько ответов, из которых только один правильный. Выберите верный, по Вашему мнению, ответ.

- А1. Какой способ нагрева применяют в электрокалориферах типа СФОЦ?
- 1) Диэлектрический.
- 2) Индукционный.
- 3) Прямой нагрев сопротивлением.
- 4) Косвенный нагрев сопротивлением.
- А2. Какой из перечисленных материалов используется в качестве наполнителя в ТЭНах?
- 1) Окись магния.
- 2) Стекловолокно.
- 3) Слюда.
- 4) Фарфор.
- АЗ. К электрическому расчету нагревателей относится:
- 1) Определение теплового к.п.д.
- 2) Определение размеров (сечение и длина)
- 3) Определение термического сопротивления
- 4) Определение рабочей температуры
- А4. Электрическая печь рассчитана на напряжение 220 В и ток 5А. Какую энергию (кВт израсходует печь за 4 часа работы? 7 Ответ округлить до десятой части числа.

Часть В

Каждое задание решите на отдельном листке и прикрепите в электронную форму краткие решения задач В1—В5 (соотношения, которые следуют из условий, основные преобразования и т. д.) в электронной форме, преобразованные путем сканирования или фотографирования с обеспечением машиночитаемого распознавания его реквизитов.

B1.

- 1. Записать систему уравнений для определения токов в ветвях путем непосредственного применения законов Кирхгофа.
- 2. Определить токи в ветвях методом контурных токов.
- 3. Построить потенциальную диаграмму для любого замкнутого контура, включающего ЭДС.
- 4. Определить Режимы работы активных элементов, составить баланс мощностей. Значения ЭДС источников и сопротивлений: E1=140 B, E2=120 B, R1=5 Om, R2=4 Om, R4=20 Om, R5=12 Om, R6=18 Om.
- В2. Выбрать предохранитель для защиты электродвигателя (ЭД) и сечение ответвления от ШР до ЭД. Питание двигателя выполнить кабелем ААГ, для прокладки на скобах по стене. Данные электродвигателя: $P_{\rm H} = 14$ кВт; Cosj = 0,85; h = 0.9; кратность пускового тока $K_{\rm h} = 5$. Пуск ЭД легкий. Электродвигатель находится во взрывоопасном помещении класса В 16.

4. РЕКОМЕНДУЕМАЯ ЛИТЕРАТУРА

Основная литература

- 1. Н.А. Акимова Монтаж, техническая эксплуатация и ремонт электрического и электромеханического оборудования. Учебное пособие. / Н.А. Акимова, Н.Ф. Котеленец, Н.И. Сентюрихин М.: Академия, 2011. 296 с.
- 2. Монтаж, техническая эксплуатация и ремонт электрического и электромеханического оборудования. Учебник. / Н.А. Акимова М.: Академия, 2013. 304 с.
- 3. Медведько Ю.А Эксплуатация электрооборудования. Задачник: Учебное пособие/ Медведько Ю.А., Таранов М.А., Хорольский В.Я. М.: Форум, Инфра-М, 2014.
- 4. Епифанов А. П Электропривод / Епифанов А. П., Малайчук Л. М., Гущинский А. Г. СПб.: Издательство "Лань", 2012.-400 с. 5. Электропривод производственных механизмов. / Никитенко Г. В. СПб.: Издательство "Лань", 2013.-224 с.

Дополнительная литература

6. Ильинский Н.Ф. Электропривод: энерго- и ресурсосбережение / Ильинский Н.Ф., Москаленко В.В. – М.: Издательский центр "Академия", 2008. – 208 с.

- 7. Никитенко Г.В. Автономное электроснабжение потребителей с использованием энергии ветра. Монография / Никитенко Г.В., Коноплев Е.В., Коноплев П.В. Ставрополь, Агрус, 2015
- 8. Курзин Н.Н., Нормов Д.А. Электротехнология: учебно-методическое пособие / Куб ГАУ: 2014. -135 с