Размер:
A A A
Цвет: C C C
Изображения Вкл. Выкл.
Обычная версия сайта
Поиск

Альтернативные и возобновляемые источники энергии и системы энергообеспечения в сельском хозяйстве

Альтернативные и возобновляемые источники энергии и системы энергообеспечения в сельском хозяйстве

ХАРАКТЕРИСТИКА НАПРАВЛЕНИЯ

Целью научного направления является развитие энергетической базы и систем энергообеспечения сельского хозяйства, обеспечение надежного и устойчивого энергообеспечения сельских потребителей при снижении энергоемкости производства, создание комфортных социально-бытовых условий жизни на селе.

Для достижения поставленной цели сотрудниками подразделений решаются следующие задачи:

- обеспечение экономичного, надежного, устойчивого и безопасного энергоснабжения сельских объектов при снижении аварийных отключений и перерывов в энергоснабжении села в 2-3 раза, повышение уровня безопасной эксплуатации энергетического оборудования (до 50%) и качества электроэнергии;

- разработка перспективных направлений, стратегии развития и создания электрических сетей нового поколения, удовлетворяющих современным условиям распределения электроэнергии сельским потребителям, включая инженерные системы в быту, ЛПХ и фермерских хозяйствах, обеспечивающих экономико-экологические требования;

-  разработка новых способов передачи электроэнергии (включая резонансные) сельским потребителям, снижающих затраты на передачу и потери энергии;

- снижение зависимости от централизованного энергоснабжения ряда сельских потребителей посредством самообеспечения энергией на базе собственных и нетрадиционных энергоресурсов с выработкой энергии на местах в соответствии с ресурсами регионов;

- разработка и реализация децентрализованных систем электро- и теплообеспечения  и средств малой энергетики с широким использованием электроэнергии, местных и возобновляемых энергоресурсов, отходов сельхозпроизводства;

- разработка и внедрение энергосберегающей интеллектуальной системы теплообеспечения и создания микроклимата в сельхозпомещениях с применением утилизации низкопотенциальной теплоты, геотермальной энергии, термоэлектричества, направленной  на  создание  оптимальных  условий  среды  обитания  животных  и  птицы, позволяющих в максимальной степени реализовать их генетический потенциал и обеспечить максимальную продуктивность при значительном снижении энергоемкости производства.

- разработка и освоение технологий получения биотоплива посредством переработки биомассы, растительных и древесных отходов, отходов животноводства в жидкое, газообразное и твердое топливо, а также получение качественных органических удобрений.

- освоение технологий и средств повышения эффективности и широкого использования возобновляемых источников энергии(ВИЭ) в сельской энергетике, снижающих их стоимость и повышающих КПД.

 

Перечень выполняемых работ

Разработка энергетической стратегии развития систем и средств энергообеспечения сельских объектов на период до 2030 года.

Разработка интеллектуальных систем и технических средств энерго- и теплообеспечения, электробезопасности и эксплуатационного контроля технического состояния электрооборудования и построения распределительных систем электроснабжения сельских потребителей.

Разработка «умных сетей», включающих в себя комплексы из централизованных сетей и распределенных автономных источников электроснабжения на базе альтернативных источников электроснабжения.

Разработка энергосберегающего вентиляционно-отопительного оборудования с утилизацией теплоты, озонированием и глубокой рециркуляции внутреннего воздуха для обеспечения требуемого микроклимата и экологии в производственных сельскохозяйственных помещениях, включая оборудование для содержания и электрообогрева молодняка животных, устройств дистанционного контроля за их состоянием.

Разработка аккумуляционных электротепловых установок для горячего водо- и парообеспечения и нагрева воздуха, адаптированных для работы по многотарифному учету электроэнергии.

Разработка резонансных методов и систем передачи электрической энергии.

Исследование научно-технических принципов и разработка конструкционных основ преобразования солнечной энергии в теплофотоэлектрических и термодинамических системах в энергию потребительских форматов (электрическую и тепловую).

Новые технологии и конструкции  кровельных солнечных (черепиц) для крыш жилых и производственных зданий с возможностью их полного или частичного энергообеспечения.

Исследование и разработка автоматизированной многомодульной теплофотоэлектрической энергосистемы.

Технологии и установки анаэробного сбраживания в биореакторах с предварительной обработкой органических отходов и системы управления процессом их анаэробной биоконверсии.

Разработка интеллектуальной ветроэнергетической установки для работы в условиях регионов с низким ветровым потенциалом

Разработка интеллектуальной автономной установки экстракции пресной воды из атмосферного воздуха для южных районов (в частности Крыма).

Построение интеллектуальной микросети автономного энергообеспечения сельских объектов с разработкой когенерационной микрогазотурбинной установки малой мощности и системы ее дистанционного управления.

В результате проведенных научных исследований только за последние годы разработаны исходные и технические требования, технические задания на 25 электроустановок для различных процессов сельскохозяйственного производства. По 18 разработкам изготовлены действующие образцы; 8 установок успешно прошли государственные приемочные испытания и рекомендованы к производству; ряд оборудования доведен до серийного производства; большинство электроустановок включено в «Проект системы машин и технологий для комплексной механизации и автоматизации сельскохозяйственного производства на период до 2020 года».

Разработанное по данному направлению электрооборудование неоднократно экспонировалось на различных выставках. Награждено медалями и дипломами.


Структура направления 

Отдел электрификации и энергообеспечения АПК

1. Лаборатория электро- и энергообеспечения и электробезопасности

2. Лаборатория электротеплообеспечения и энергосбережения

 

Отдел возобновляемых источников энергии

3. Лаборатория солнечной энергетики

4. Лаборатория энергетического оборудования на возобновляемых источниках энергии

5. Лаборатория технологических систем применения возобновляемых и альтернативных источников энергии

6. Лаборатория биоэнергетических технологий

 


Ключевые публикации

1. Д.С. Стребков. Физические основы солнечной энергетики /Под ред. д.т.н. Безруких П.П. – 2-е изд. перераб. и доп. – М.: ФГБНУ ВИЭСХ, 2017.– 192 с.

2. Yuferev, L.; Sokolov, A. Energy-Efficient Lighting System for Greenhouse Plants // In: Handbook of Research on Renewable Energy and Electric Resources for Sustainable Rural Development / Ed. by Kharchenko V., Vasant P. IGI Global, 2018 pp. 204-229. DOI: 10.4018/978-1-5225-3867-7.ch009 SCOPUS

3. Leonid Yuferev (Federal Scientific Agroengineering Center VIM, Russia). The Resonant Power Transmission System. Source Title: Handbook of Research on Renewable Energy and Electric Resources for Sustainable Rural Development. Copyright: 2018 Pages 534-560. DOI: 10.4018/978-1-5225-3867-7.ch022

4. Yu.D. Arbuzov, V.M. Evdokimov, V.A. Majorov, L.D. Saginov, O. Shepovalova. Optimization of design parameters and the light intensity of the semiconductor solar cells internal losses in systems with concentrated radiation. 44 National Solar Conference, April 1, 2015. Energy Procedja 74(2015) 1543-1550. Web of Science

5. Alexei V. Kuzmichyov, Vladimir V. Malyshev, Dmitry A. Tikhomirov. Efficiency of the combined pasteurization of milk using UV and IR irradiation. Журнал Light & Engineering. Volume 19, Number 1, 2011, pp. 74–78.

6. Кузьмичёв А.В., Лямцов А.К., Тихомиров Д.А. Теплоэнергетические показатели ИК облучателей для молодняка животных // Светотехника. 2015. № 3. С. 57-58.

7. Тихомиров Д.А. Энергоэффективные электрические средства и системы теплообеспечения технологических процессов в животноводстве // Вестник ВНИИМЖ.-Вып.4(24). - 2016 г. - с.15-23.

8. Тихомиров Д.А., Тихомиров А.В. Совершенствование и модернизация систем и средств энергообеспечения - важнейшее направление решения задач повышения энергоэффективности сельхозпроизводства // Техника и оборудование для села. 2017. № 11. С. 32-36.

9. Strebkov, D. S. Concentrator Photovoltaic Modules Integrated in Tile [Text] / D. S. Strebkov, O. V. Shepovalova // AIP Conf. Proc. – 2017. – Vol. 1814, 020076. – Technologies and Materials for Renewable Energy, Environment and Sustainability: TMREES16 fall Meeting Conference. Paris, France, 16-18 November 2016. DOI: 10.1063/1.4976295

10. Dr. Olga Shepovalova, dr. Anatoly V. Tikhomirov, dr. Catherine K. Markelova, Viktoria Yu. Ukhanova. Estimation of Solar power systems implementation potential for rural settlements of Russia / 29th European Photovoltaic Solar Energy Conference and Exhibition Rae Convention   Exhibition Center Amsterdam The Netherlands, 22-26 September. 2014

11.Strebkov D.S., Nekrasov A.I., Nekrasov A.A. Maintenance of Power Equipment System Based on the Methods of Diagnosis and Control of Technical Condition // Handbook of Research on Renewable Ener-gy and Electric Resourcesfor Sustainable Rural Development / ed. by V. Kharchenko, P. Vasant. — USA, PA, Hershey: IGI Global, 2018. — P. 421–448. — ISBN 9781522538677. — DOI: 10.4018/978-1-5225-3867-7.ch018. — URL: https://www.igi-global.com/gateway/chapter/full-text-pdf/201348

12. Strebkov D.S., Nekrasov A.I., Trubnikov V. Single-Wire Resonant Electric Power Systems for Renewable-Based Electric Grid // Handbook of Research on Renewable Energy and Electric Resourcesfor Sustainable Rural Development / ed. by V. Kharchenko, P. Vasant. — USA, PA, Hershey: IGI Global, 2018. — P. 449–474. — ISBN 9781522538677. — DOI: 10.4018/978-1-5225-3867-7.ch019. — URL: https://www.igi-global.com/gateway/chapter/201348? accesstype= complimentarycopy

13. Y.D. Arbuzov, V.M. Evdokimov, V.A. Majorov, L.D. Saginov, O.V. Shepovalova «Ultimate Open-Circuit Voltage of the Silicon Solar Cells» Proceedings of 29th European Photovoltaic Solar Energy Conference and Exibition. pp. 933 -938. DOI:10.4229/EUPVSEC2014 2014-2AV.2.56 ISBN:3-936338-34-5. SCOPUS

14. Valeriy Kharchenko, Vladimir Panchenko, Pavel V. Tikhonov, Pandian Vasant. Cogenerative PV Thermal Modules of Different Design for Autonomous Heat and Electricity Supply // Handbook of Re-search on Renewable Energy and Electric Resources for Sustainable Rural Development, pages 86 – 119, DOI: 10.4018/978-1-5225-3867-7.ch004 SCOPUS.

15. Arbuzov, Y. D. Ultimate efficiency of Cascade Solar Cells Based on Homogeneous Tunnel-Junction Structures in CPV Systems [Text] / Y. D. Arbuzov, V. M. Evdokimov, O. V. Shepovalova // AIP Conf. Proc. – 2017. – Vol. 1814, 020075. DOI: 10.1063/1.4976294 Web of Science, SCOPUS.

16. Influence of cationic polyacrilamide flocculant on high-solids anaerobic digestion of sewage sludge under thermophilic conditions. Yuri Litti , Anna Nikitina, Dmitriy Kovalev, Artem Ermoshin, Rishi Mahajan , Gunjan Goel & Alla Nozhevnikova Environmental Technology. Pages 1-10 | Received 22 Aug 2017, Accepted 08 Dec 2017, Accepted author version posted online: 14 Dec 2017, Published online: 28 Dec 2017

17. Особенности моделирования процессов передачи тепла и массы и масштабный переход в реакторах производства биогаза. Г.Е. Сахметова, А.М. Бренер, В.В. Дильман, О.С. Балабеков, Д.А. Ковалев. Reports of the national cademy of sciences of the republic of kazakhstan issn 2224-5227 Volume 3, Number 313 (2017), 34 –40

18. Химия биомассы: биотоплива и биопластики / А. Р. Аблаев, В. И. Быков, С. Д. Варфоломеев и др. — Научный мир Москва, 2017. — С. 790

19. Methane production by anaerobic digestion of organic waste from vegetable processing facilities. M. A. Gladchenko, D. A. Kovalev, A. A. Kovalev, Yu. V. Litti and A. N. Nozhevnikova. Applied Biochemistry and Microbiology, 2017 Vol. 53 No 2 pp. 242-249.

20. Effect of cavitational disintegration of surplus activated sludge on methane generation in the process of anaerobic conversion. M. A. Gladchenko, S. D. Razumovskii, D. A. Kovalev, V. P. Murygina, E. G. Raevskaya and S. D. Varfolomeev. Russian Journal of Physical Chemistry B, 2016, Vol. 10, No. 3, pp. 496–503.

21. Study of the process of hydraulic mixing in anaerobic digester of biogas plant. Karaeva J.V., Khalitova G.R., Trakhunova I.A., Kovalev D.A. Inzynieria Chemiczna i Procesowa. 2015. Т. 36. № 1. С. 101-112.

22. Dorzhiev S. S., Bazarova E. G., Morenko K. S. The Features of the Work of Wind-Receiving Devices on Different Speeds of the Wind Flow // Handbook of Research on Renewable Energy and Electric Resources for Sustainable Rural Development / ed. by V. Kharchenko, P. Vasant. — USA, PA, Hershey: IGI Global, 2018. — P. 383–393. — ISBN 9781522538677. — DOI: 10.4018/978- 1- 5225- 3867- 7.ch016.

23. Gusarov V.A. Rer-based microgrid forenvironmentally friendly energy supply in agriculture / Adomavichus V.B., Kharchenko V.V., Vilackas I.Y., Gusarov V.A. // Conference Proceeding. 5th International Conference TAE 2013. Trends in Agricultural Engineering 3 – 5 September, 2013. - Praga, Czech Republic. - С. 51 - 55.

24.Gusarov V.A. Investigation of experimental flat pv thermal module parametres in natural conditions / Kharchenko V.V., Nikitin B.A., Gusarov V.A., Tihonov P.V. // Conference Proceeding. 5th International Conference TAE 2013. Trends in Agricultural Engineering 3 – 5 September, 2013. - Praga, Czech Republic. - С. 309 - 313.

25. Тихомиров А.В., Свентицкий И.И., Маркелова Е.К., Уханова В.Ю. Энергетическая стратегия сельского хозяйства России на период до 2030 года. - М.: ФГБНУ ВИЭСХ, 2015.-76 с.


Trusted by Immediate Future